Node:

1
2
3
4
5
6
7
8
9
10
11
public Node search(Node root, int key)
{
// Base Cases: root is null or key is present at root
if (root==null || root.key==key)
return root;
// Key is greater than root's key
if (root.key < key)
return search(root.right, key);
// Key is smaller than root's key
return search(root.left, key);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
struct node* search(struct node* root, int key)
{
// Base Cases: root is null or key is present at root
if (root == NULL || root->key == key)
return root;

// Key is greater than root's key
if (root->key < key)
return search(root->right, key);

// Key is smaller than root's key
return search(root->left, key);
}

插入节点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
class BinarySearchTree {

/* Class containing left
and right child of current node
* and key value*/
class Node
{
int key;
Node left, right;

public Node(int item)
{
key = item;
left = right = null;
}
}
// Root of BST
Node root;
// Constructor
BinarySearchTree()
{
root = null;
}
// This method mainly calls insertRec()
void insert(int key)
{
root = insertRec(root, key);
}
/* A recursive function to
insert a new key in BST */
Node insertRec(Node root, int key)
{

/* If the tree is empty,
return a new node */
if (root == null)
{
root = new Node(key);
return root;
}

/* Otherwise, recur down the tree */
if (key < root.key)
root.left = insertRec(root.left, key);
else if (key > root.key)
root.right = insertRec(root.right, key);

/* return the (unchanged) node pointer */
return root;
}

// This method mainly calls InorderRec()
void inorder()
{
inorderRec(root);
}

// A utility function to
// do inorder traversal of BST
void inorderRec(Node root)
{
if (root != null) {
inorderRec(root.left);
System.out.println(root.key);
inorderRec(root.right);
}
}
// Driver Code
public static void main(String[] args)
{
BinarySearchTree tree = new BinarySearchTree();

/* Let us create following BST
50
/ \
30 70
/ \ / \
20 40 60 80 */
tree.insert(50);
tree.insert(30);
tree.insert(20);
tree.insert(40);
tree.insert(70);
tree.insert(60);
tree.insert(80);

// print inorder traversal of the BST
tree.inorder();
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// C++ program to demonstrate insertion
// in a BST recursively.
#include <iostream>
using namespace std;
class BST
{
int data;
BST *left, *right;

public:
// Default constructor.
BST();

// Parameterized constructor.
BST(int);

// Insert function.
BST* Insert(BST*, int);

// Inorder traversal.
void Inorder(BST*);
};

// Default Constructor definition.
BST ::BST()
: data(0)
, left(NULL)
, right(NULL)
{
}

// Parameterized Constructor definition.
BST ::BST(int value)
{
data = value;
left = right = NULL;
}

// Insert function definition.
BST* BST ::Insert(BST* root, int value)
{
if (!root)
{
// Insert the first node, if root is NULL.
return new BST(value);
}

// Insert data.
if (value > root->data)
{
// Insert right node data, if the 'value'
// to be inserted is greater than 'root' node data.

// Process right nodes.
root->right = Insert(root->right, value);
}
else
{
// Insert left node data, if the 'value'
// to be inserted is greater than 'root' node data.

// Process left nodes.
root->left = Insert(root->left, value);
}

// Return 'root' node, after insertion.
return root;
}

// Inorder traversal function.
// This gives data in sorted order.
void BST ::Inorder(BST* root)
{
if (!root) {
return;
}
Inorder(root->left);
cout << root->data << endl;
Inorder(root->right);
}

// Driver code
int main()
{
BST b, *root = NULL;
root = b.Insert(root, 50);
b.Insert(root, 30);
b.Insert(root, 20);
b.Insert(root, 40);
b.Insert(root, 70);
b.Insert(root, 60);
b.Insert(root, 80);

b.Inorder(root);
return 0;
}